An Entity of Type : yago:VonNeumannAlgebras, within Data Space : dbpedia-live.openlinksw.com associated with source document(s)

In functional analysis, an abelian von Neumann algebra is a von Neumann algebra of operators on a Hilbert space in which all elements commute. The prototypical example of an abelian von Neumann algebra is the algebra L∞(X, μ) for μ a σ-finite measure on X realized as an algebra of operators on the Hilbert space L2(X, μ) as follows: Each f ∈ L∞(X, μ) is identified with the multiplication operator Of particular importance are the abelian von Neumann algebras on separable Hilbert spaces, particularly since they are completely classifiable by simple invariants.

AttributesValues
rdf:type
sameAs
foaf:isPrimaryTopicOf
rdfs:comment
• In functional analysis, an abelian von Neumann algebra is a von Neumann algebra of operators on a Hilbert space in which all elements commute. The prototypical example of an abelian von Neumann algebra is the algebra L∞(X, μ) for μ a σ-finite measure on X realized as an algebra of operators on the Hilbert space L2(X, μ) as follows: Each f ∈ L∞(X, μ) is identified with the multiplication operator Of particular importance are the abelian von Neumann algebras on separable Hilbert spaces, particularly since they are completely classifiable by simple invariants.
rdfs:label
• Abelian von Neumann algebra
has abstract
• In functional analysis, an abelian von Neumann algebra is a von Neumann algebra of operators on a Hilbert space in which all elements commute. The prototypical example of an abelian von Neumann algebra is the algebra L∞(X, μ) for μ a σ-finite measure on X realized as an algebra of operators on the Hilbert space L2(X, μ) as follows: Each f ∈ L∞(X, μ) is identified with the multiplication operator Of particular importance are the abelian von Neumann algebras on separable Hilbert spaces, particularly since they are completely classifiable by simple invariants. Though there is a theory for von Neumann algebras on non-separable Hilbert spaces (and indeed much of the general theory still holds in that case) the theory is considerably simpler for algebras on separable spaces and most applications to other areas of mathematics or physics only use separable Hilbert spaces. Note that if the measure spaces (X, μ) is a (that is X − N is a standard Borel space for some null set N and μ is a σ-finite measure) then L2(X, μ) is separable.
Link to the Wikipage edit URL
extraction datetime
Link to the Wikipage history URL
Wikipage page ID
page length (characters) of wiki page
Wikipage modification datetime
Wiki page out degree
Wikipage revision ID
Link to the Wikipage revision URL
dbp:wikiPageUsesTemplate
dct:subject
is foaf:primaryTopic of
is known for of
is Wikipage disambiguates of
is Wikipage redirect of
Faceted Search & Find service v1.17_git39 as of Aug 10 2019

Alternative Linked Data Documents: iSPARQL | ODE     Content Formats:       RDF       ODATA       Microdata      About

OpenLink Virtuoso version 08.03.3319 as of Sep 1 2020, on Linux (x86_64-generic-linux-glibc25), Single-Server Edition (61 GB total memory)