About: Affine Lie algebra     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : yago:Science105999797, within Data Space : dbpedia-live.openlinksw.com associated with source document(s)
QRcode icon
http://dbpedia-live.openlinksw.com/describe/?url=http%3A%2F%2Fdbpedia.org%2Fresource%2FAffine_Lie_algebra

In mathematics, an affine Lie algebra is an infinite-dimensional Lie algebra that is constructed in a canonical fashion out of a finite-dimensional simple Lie algebra. It is a Kac–Moody algebra for which the generalized Cartan matrix is positive semi-definite and has corank 1. From purely mathematical point of view, affine Lie algebras are interesting because their representation theory, like representation theory of finite dimensional, semisimple Lie algebras is much better understood than that of general Kac–Moody algebras. As observed by Victor Kac, the character formula for representations of affine Lie algebras implies certain combinatorial identities, the Macdonald identities.

AttributesValues
rdf:type
sameAs
foaf:isPrimaryTopicOf
rdfs:comment
  • In mathematics, an affine Lie algebra is an infinite-dimensional Lie algebra that is constructed in a canonical fashion out of a finite-dimensional simple Lie algebra. It is a Kac–Moody algebra for which the generalized Cartan matrix is positive semi-definite and has corank 1. From purely mathematical point of view, affine Lie algebras are interesting because their representation theory, like representation theory of finite dimensional, semisimple Lie algebras is much better understood than that of general Kac–Moody algebras. As observed by Victor Kac, the character formula for representations of affine Lie algebras implies certain combinatorial identities, the Macdonald identities.
  • In mathematics, an affine Lie algebra is an infinite-dimensional Lie algebra that is constructed in a canonical fashion out of a finite-dimensional simple Lie algebra. It is a Kac–Moody algebra for which the generalized Cartan matrix is positive semi-definite and has corank 1. From a purely mathematical point of view, affine Lie algebras are interesting because their representation theory, like representation theory of finite dimensional, semisimple Lie algebras is much better understood than that of general Kac–Moody algebras. As observed by Victor Kac, the character formula for representations of affine Lie algebras implies certain combinatorial identities, the Macdonald identities.
  • In mathematics, an affine Lie algebra is an infinite-dimensional Lie algebra that is constructed in a canonical fashion out of a finite-dimensional simple Lie algebra. It is a Kac–Moody algebra for which the generalized Cartan matrix is positive semi-definite and has corank 1. From a purely mathematical point of view, affine Lie algebras are interesting because their representation theory, like representation theory of finite-dimensional semisimple Lie algebras, is much better understood than that of general Kac–Moody algebras. As observed by Victor Kac, the character formula for representations of affine Lie algebras implies certain combinatorial identities, the Macdonald identities.
rdfs:label
  • Affine Lie algebra
has abstract
  • In mathematics, an affine Lie algebra is an infinite-dimensional Lie algebra that is constructed in a canonical fashion out of a finite-dimensional simple Lie algebra. It is a Kac–Moody algebra for which the generalized Cartan matrix is positive semi-definite and has corank 1. From purely mathematical point of view, affine Lie algebras are interesting because their representation theory, like representation theory of finite dimensional, semisimple Lie algebras is much better understood than that of general Kac–Moody algebras. As observed by Victor Kac, the character formula for representations of affine Lie algebras implies certain combinatorial identities, the Macdonald identities. Affine Lie algebras play an important role in string theory and two-dimensional conformal field theory due to the way they are constructed: starting from a simple Lie algebra , one considers the loop algebra, , formed by the -valued functions on a circle (interpreted as the closed string) with pointwise commutator. The affine Lie algebra is obtained by adding one extra dimension to the loop algebra and modifying a commutator in a non-trivial way, which physicists call a quantum anomaly (in this case, the anomaly of the WZW model) and mathematicians a central extension. More generally, if σ is an automorphism of the simple Lie algebra associated to an automorphism of its Dynkin diagram, the twisted loop algebra consists of -valued functions f on the real line which satisfythe twisted periodicity condition f(x+2π) = σ f(x). Their central extensions are precisely the twisted affine Lie algebras. The point of view of string theory helps to understand many deep properties of affine Lie algebras, such as the fact that the characters of their representations transform amongst themselves under the modular group.
  • In mathematics, an affine Lie algebra is an infinite-dimensional Lie algebra that is constructed in a canonical fashion out of a finite-dimensional simple Lie algebra. It is a Kac–Moody algebra for which the generalized Cartan matrix is positive semi-definite and has corank 1. From a purely mathematical point of view, affine Lie algebras are interesting because their representation theory, like representation theory of finite dimensional, semisimple Lie algebras is much better understood than that of general Kac–Moody algebras. As observed by Victor Kac, the character formula for representations of affine Lie algebras implies certain combinatorial identities, the Macdonald identities. Affine Lie algebras play an important role in string theory and two-dimensional conformal field theory due to the way they are constructed: starting from a simple Lie algebra , one considers the loop algebra, , formed by the -valued functions on a circle (interpreted as the closed string) with pointwise commutator. The affine Lie algebra is obtained by adding one extra dimension to the loop algebra and modifying a commutator in a non-trivial way, which physicists call a quantum anomaly (in this case, the anomaly of the WZW model) and mathematicians a central extension. More generally, if σ is an automorphism of the simple Lie algebra associated to an automorphism of its Dynkin diagram, the twisted loop algebra consists of -valued functions f on the real line which satisfythe twisted periodicity condition f(x+2π) = σ f(x). Their central extensions are precisely the twisted affine Lie algebras. The point of view of string theory helps to understand many deep properties of affine Lie algebras, such as the fact that the characters of their representations transform amongst themselves under the modular group.
  • In mathematics, an affine Lie algebra is an infinite-dimensional Lie algebra that is constructed in a canonical fashion out of a finite-dimensional simple Lie algebra. It is a Kac–Moody algebra for which the generalized Cartan matrix is positive semi-definite and has corank 1. From a purely mathematical point of view, affine Lie algebras are interesting because their representation theory, like representation theory of finite dimensional, semisimple Lie algebras is much better understood than that of general Kac–Moody algebras. As observed by Victor Kac, the character formula for representations of affine Lie algebras implies certain combinatorial identities, the Macdonald identities. Affine Lie algebras play an important role in string theory and two-dimensional conformal field theory due to the way they are constructed: starting from a simple Lie algebra , one considers the loop algebra, , formed by the -valued functions on a circle (interpreted as the closed string) with pointwise commutator. The affine Lie algebra is obtained by adding one extra dimension to the loop algebra and modifying a commutator in a non-trivial way, which physicists call a quantum anomaly (in this case, the anomaly of the WZW model) and mathematicians a central extension. More generally, if σ is an automorphism of the simple Lie algebra associated to an automorphism of its Dynkin diagram, the twisted loop algebra consists of -valued functions f on the real line which satisfythe twisted periodicity condition f(x + 2π) = σ f(x). Their central extensions are precisely the twisted affine Lie algebras. The point of view of string theory helps to understand many deep properties of affine Lie algebras, such as the fact that the characters of their representations transform amongst themselves under the modular group.
  • In mathematics, an affine Lie algebra is an infinite-dimensional Lie algebra that is constructed in a canonical fashion out of a finite-dimensional simple Lie algebra. It is a Kac–Moody algebra for which the generalized Cartan matrix is positive semi-definite and has corank 1. From a purely mathematical point of view, affine Lie algebras are interesting because their representation theory, like representation theory of finite-dimensional semisimple Lie algebras, is much better understood than that of general Kac–Moody algebras. As observed by Victor Kac, the character formula for representations of affine Lie algebras implies certain combinatorial identities, the Macdonald identities. Affine Lie algebras play an important role in string theory and two-dimensional conformal field theory due to the way they are constructed: starting from a simple Lie algebra , one considers the loop algebra, , formed by the -valued functions on a circle (interpreted as the closed string) with pointwise commutator. The affine Lie algebra is obtained by adding one extra dimension to the loop algebra and modifying a commutator in a non-trivial way, which physicists call a quantum anomaly (in this case, the anomaly of the WZW model) and mathematicians a central extension. More generally, if σ is an automorphism of the simple Lie algebra associated to an automorphism of its Dynkin diagram, the twisted loop algebra consists of -valued functions f on the real line which satisfythe twisted periodicity condition f(x + 2π) = σ f(x). Their central extensions are precisely the twisted affine Lie algebras. The point of view of string theory helps to understand many deep properties of affine Lie algebras, such as the fact that the characters of their representations transform amongst themselves under the modular group.
Link to the Wikipage edit URL
extraction datetime
Link to the Wikipage history URL
Wikipage page ID
page length (characters) of wiki page
Wikipage modification datetime
Wiki page out degree
Wikipage revision ID
Link to the Wikipage revision URL
dbp:wikiPageUsesTemplate
dct:subject
is foaf:primaryTopic of
is rdfs:seeAlso of
is Wikipage redirect of
Faceted Search & Find service v1.17_git39 as of Aug 10 2019


Alternative Linked Data Documents: iSPARQL | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 08.03.3319 as of Sep 1 2020, on Linux (x86_64-generic-linux-glibc25), Single-Server Edition (61 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2021 OpenLink Software