In mathematics, an algebra homomorphism is an homomorphism between two associative algebras. More precisely, if A and B, are algebras over a field (or commutative ring) K, it is a function such that for all k in K and x, y in A,
*
*
* The first two conditions say that F is a module homomorphism. If F admits an inverse homomorphism, or equivalently if it is bijective, F is said to be an isomorphism between A and B.
Attributes | Values |
---|
rdf:type
| |
sameAs
| |
foaf:isPrimaryTopicOf
| |
rdfs:comment
| - In mathematics, an algebra homomorphism is an homomorphism between two associative algebras. More precisely, if A and B, are algebras over a field (or commutative ring) K, it is a function such that for all k in K and x, y in A,
*
*
* The first two conditions say that F is a module homomorphism. If F admits an inverse homomorphism, or equivalently if it is bijective, F is said to be an isomorphism between A and B.
- In mathematics, an algebra homomorphism is an homomorphism between two associative algebras. More precisely, if A and B are algebras over a field (or commutative ring) K, it is a function such that for all k in K and x, y in A,
*
*
* The first two conditions say that F is a K-linear map (or K-module homomorphism if K is a commutative ring), and the last condition says that F is a (non-unital) ring homomorphism. If F admits an inverse homomorphism, or equivalently if it is bijective, F is said to be an isomorphism between A and B.
- In mathematics, an algebra homomorphism is a homomorphism between two associative algebras. More precisely, if A and B are algebras over a field (or commutative ring) K, it is a function such that for all k in K and x, y in A,
*
*
* The first two conditions say that F is a K-linear map (or K-module homomorphism if K is a commutative ring), and the last condition says that F is a (non-unital) ring homomorphism. If F admits an inverse homomorphism, or equivalently if it is bijective, F is said to be an isomorphism between A and B.
|
rdfs:label
| |
has abstract
| - In mathematics, an algebra homomorphism is an homomorphism between two associative algebras. More precisely, if A and B, are algebras over a field (or commutative ring) K, it is a function such that for all k in K and x, y in A,
*
*
* The first two conditions say that F is a module homomorphism. If F admits an inverse homomorphism, or equivalently if it is bijective, F is said to be an isomorphism between A and B.
- In mathematics, an algebra homomorphism is an homomorphism between two associative algebras. More precisely, if A and B are algebras over a field (or commutative ring) K, it is a function such that for all k in K and x, y in A,
*
*
* The first two conditions say that F is a K-linear map (or K-module homomorphism if K is a commutative ring), and the last condition says that F is a (non-unital) ring homomorphism. If F admits an inverse homomorphism, or equivalently if it is bijective, F is said to be an isomorphism between A and B.
- In mathematics, an algebra homomorphism is a homomorphism between two associative algebras. More precisely, if A and B are algebras over a field (or commutative ring) K, it is a function such that for all k in K and x, y in A,
*
*
* The first two conditions say that F is a K-linear map (or K-module homomorphism if K is a commutative ring), and the last condition says that F is a (non-unital) ring homomorphism. If F admits an inverse homomorphism, or equivalently if it is bijective, F is said to be an isomorphism between A and B.
|
Link to the Wikipage edit URL
| |
extraction datetime
| |
Link to the Wikipage history URL
| |
Wikipage page ID
| |
page length (characters) of wiki page
| |
Wikipage modification datetime
| |
Wiki page out degree
| |
Wikipage revision ID
| |
Link to the Wikipage revision URL
| |
dbp:wikiPageUsesTemplate
| |
dct:subject
| |
is foaf:primaryTopic
of | |
is Wikipage redirect
of | |