# ## About: K-algebraGotoSponge NotDistinct Permalink

An Entity of Type : yago:Science105999797, within Data Space : dbpedia-live.openlinksw.com associated with source document(s)  In mathematics, an algebra over a field (often simply called an algebra) is a vector space equipped with a bilinear product. Thus, an algebra is an algebraic structure, which consists of a set, together with operations of multiplication, addition, and scalar multiplication by elements of the underlying field, and satisfies the axioms implied by "vector space" and "bilinear". Many authors use the term algebra to mean associative algebra, or unital associative algebra, or in some subjects such as algebraic geometry, unital associative commutative algebra.

AttributesValues
rdf:type
sameAs
foaf:isPrimaryTopicOf
rdfs:comment
• In mathematics, an algebra over a field (often simply called an algebra) is a vector space equipped with a bilinear product. Thus, an algebra is an algebraic structure, which consists of a set, together with operations of multiplication, addition, and scalar multiplication by elements of the underlying field, and satisfies the axioms implied by "vector space" and "bilinear". Many authors use the term algebra to mean associative algebra, or unital associative algebra, or in some subjects such as algebraic geometry, unital associative commutative algebra.
• In mathematics, an algebra over a field (often simply called an algebra) is a vector space equipped with a bilinear product. Thus, an algebra is an algebraic structure consisting of a set together with operations of multiplication and addition and scalar multiplication by elements of a field and satisfying the axioms implied by "vector space" and "bilinear". Many authors use the term algebra to mean associative algebra, or unital associative algebra, or in some subjects such as algebraic geometry, unital associative commutative algebra.
rdfs:label
• Algebra over a field
has abstract
• In mathematics, an algebra over a field (often simply called an algebra) is a vector space equipped with a bilinear product. Thus, an algebra is an algebraic structure, which consists of a set, together with operations of multiplication, addition, and scalar multiplication by elements of the underlying field, and satisfies the axioms implied by "vector space" and "bilinear". The multiplication operation in an algebra may or may not be associative, leading to the notions of associative algebras and nonassociative algebras. Given an integer n, the ring of real square matrices of order n is an example of an associative algebra over the field of real numbers under matrix addition and matrix multiplication since matrix multiplication is associative. Three-dimensional Euclidean space with multiplication given by the vector cross product is an example of a nonassociative algebra over the field of real numbers since the vector cross product is nonassociative, satisfying the Jacobi identity instead. An algebra is unital or unitary if it has an identity element with respect to the multiplication. The ring of real square matrices of order n forms a unital algebra since the identity matrix of order n is the identity element with respect to matrix multiplication. It is an example of a unital associative algebra, a (unital) ring that is also a vector space. Many authors use the term algebra to mean associative algebra, or unital associative algebra, or in some subjects such as algebraic geometry, unital associative commutative algebra. Replacing the field of scalars by a commutative ring leads to the more general notion of an . Algebras are not to be confused with vector spaces equipped with a bilinear form, like inner product spaces, as, for such a space, the result of a product is not in the space, but rather in the field of coefficients.
• In mathematics, an algebra over a field (often simply called an algebra) is a vector space equipped with a bilinear product. Thus, an algebra is an algebraic structure consisting of a set together with operations of multiplication and addition and scalar multiplication by elements of a field and satisfying the axioms implied by "vector space" and "bilinear". The multiplication operation in an algebra may or may not be associative, leading to the notions of associative algebras and nonassociative algebras. Given an integer n, the ring of real square matrices of order n is an example of an associative algebra over the field of real numbers under matrix addition and matrix multiplication since matrix multiplication is associative. Three-dimensional Euclidean space with multiplication given by the vector cross product is an example of a nonassociative algebra over the field of real numbers since the vector cross product is nonassociative, satisfying the Jacobi identity instead. An algebra is unital or unitary if it has an identity element with respect to the multiplication. The ring of real square matrices of order n forms a unital algebra since the identity matrix of order n is the identity element with respect to matrix multiplication. It is an example of a unital associative algebra, a (unital) ring that is also a vector space. Many authors use the term algebra to mean associative algebra, or unital associative algebra, or in some subjects such as algebraic geometry, unital associative commutative algebra. Replacing the field of scalars by a commutative ring leads to the more general notion of an . Algebras are not to be confused with vector spaces equipped with a bilinear form, like inner product spaces, as, for such a space, the result of a product is not in the space, but rather in the field of coefficients.
Link to the Wikipage edit URL
extraction datetime
Link to the Wikipage history URL
Wikipage page ID
page length (characters) of wiki page
Wikipage modification datetime
Wiki page out degree
Wikipage revision ID
Faceted Search & Find service v1.17_git39 as of Aug 10 2019   OpenLink Virtuoso version 08.03.3319 as of Sep 1 2020, on Linux (x86_64-generic-linux-glibc25), Single-Server Edition (61 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2021 OpenLink Software