In ring theory and related areas of mathematics a central simple algebra (CSA) over a field K is a finite-dimensional associative algebra A, which is simple, and for which the center is exactly K. As an example, note that any simple algebra is a central simple algebra over its center. For example, the complex numbers C form a CSA over themselves, but not over the real numbers R (the center of C is all of C, not just R). The quaternions H form a 4-dimensional CSA over R, and in fact represent the only non-trivial element of the Brauer group of the reals (see below).
Attributes | Values |
---|
rdf:type
| |
sameAs
| |
foaf:isPrimaryTopicOf
| |
rdfs:comment
| - In ring theory and related areas of mathematics a central simple algebra (CSA) over a field K is a finite-dimensional associative algebra A, which is simple, and for which the center is exactly K. As an example, note that any simple algebra is a central simple algebra over its center. For example, the complex numbers C form a CSA over themselves, but not over the real numbers R (the center of C is all of C, not just R). The quaternions H form a 4-dimensional CSA over R, and in fact represent the only non-trivial element of the Brauer group of the reals (see below).
- In ring theory and related areas of mathematics a central simple algebra (CSA) over a field K is a finite-dimensional A, which is simple, and for which the center is exactly K. As an example, note that any simple algebra is a central simple algebra over its center. For example, the complex numbers C form a CSA over themselves, but not over the real numbers R (the center of C is all of C, not just R). The quaternions H form a 4-dimensional CSA over R, and in fact represent the only non-trivial element of the Brauer group of the reals (see below).
- In ring theory and related areas of mathematics a central simple algebra (CSA) over a field K is a finite-dimensional associative K-algebra A, which is simple, and for which the center is exactly K. As an example, note that any simple algebra is a central simple algebra over its center. For example, the complex numbers C form a CSA over themselves, but not over the real numbers R (the center of C is all of C, not just R). The quaternions H form a 4-dimensional CSA over R, and in fact represent the only non-trivial element of the Brauer group of the reals (see below).
|
rdfs:label
| |
has abstract
| - In ring theory and related areas of mathematics a central simple algebra (CSA) over a field K is a finite-dimensional associative algebra A, which is simple, and for which the center is exactly K. As an example, note that any simple algebra is a central simple algebra over its center. For example, the complex numbers C form a CSA over themselves, but not over the real numbers R (the center of C is all of C, not just R). The quaternions H form a 4-dimensional CSA over R, and in fact represent the only non-trivial element of the Brauer group of the reals (see below). Given two central simple algebras A ~ M(n,S) and B ~ M(m,T) over the same field F, A and B are called similar (or Brauer equivalent) if their division rings S and T are isomorphic. The set of all equivalence classes of central simple algebras over a given field F, under this equivalence relation, can be equipped with a group operation given by the tensor product of algebras. The resulting group is called the Brauer group Br(F) of the field F. It is always a torsion group.
- In ring theory and related areas of mathematics a central simple algebra (CSA) over a field K is a finite-dimensional A, which is simple, and for which the center is exactly K. As an example, note that any simple algebra is a central simple algebra over its center. For example, the complex numbers C form a CSA over themselves, but not over the real numbers R (the center of C is all of C, not just R). The quaternions H form a 4-dimensional CSA over R, and in fact represent the only non-trivial element of the Brauer group of the reals (see below). Given two central simple algebras A ~ M(n,S) and B ~ M(m,T) over the same field F, A and B are called similar (or Brauer equivalent) if their division rings S and T are isomorphic. The set of all equivalence classes of central simple algebras over a given field F, under this equivalence relation, can be equipped with a group operation given by the tensor product of algebras. The resulting group is called the Brauer group Br(F) of the field F. It is always a torsion group.
- In ring theory and related areas of mathematics a central simple algebra (CSA) over a field K is a finite-dimensional associative K-algebra A, which is simple, and for which the center is exactly K. As an example, note that any simple algebra is a central simple algebra over its center. For example, the complex numbers C form a CSA over themselves, but not over the real numbers R (the center of C is all of C, not just R). The quaternions H form a 4-dimensional CSA over R, and in fact represent the only non-trivial element of the Brauer group of the reals (see below). Given two central simple algebras A ~ M(n,S) and B ~ M(m,T) over the same field F, A and B are called similar (or Brauer equivalent) if their division rings S and T are isomorphic. The set of all equivalence classes of central simple algebras over a given field F, under this equivalence relation, can be equipped with a group operation given by the tensor product of algebras. The resulting group is called the Brauer group Br(F) of the field F. It is always a torsion group.
|
Link to the Wikipage edit URL
| |
Link from a Wikipage to an external page
| |
extraction datetime
| |
Link to the Wikipage history URL
| |
Wikipage page ID
| |
page length (characters) of wiki page
| |
Wikipage modification datetime
| |
Wiki page out degree
| |
Wikipage revision ID
| |
Link to the Wikipage revision URL
| |
dbp:wikiPageUsesTemplate
| |
dct:subject
| |
is foaf:primaryTopic
of | |
is rdfs:seeAlso
of | |
is Wikipage disambiguates
of | |
is Wikipage redirect
of | |