About: Generalized lifting     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : yago:Wavelets, within Data Space : dbpedia-live.openlinksw.com associated with source document(s)
QRcode icon
http://dbpedia-live.openlinksw.com/describe/?url=http%3A%2F%2Fdbpedia.org%2Fresource%2FGeneralized_lifting

The generalized lifting scheme was developed by Joel Solé and Philippe Salembier and published in Solé's PhD dissertation. It is based on the classical lifting scheme and generalizes it by breaking out a restriction hidden in the scheme structure. The classical lifting scheme has three kinds of operations:

AttributesValues
rdf:type
thumbnail
sameAs
foaf:isPrimaryTopicOf
rdfs:comment
  • The generalized lifting scheme was developed by Joel Solé and Philippe Salembier and published in Solé's PhD dissertation. It is based on the classical lifting scheme and generalizes it by breaking out a restriction hidden in the scheme structure. The classical lifting scheme has three kinds of operations:
rdfs:label
  • Generalized lifting
has abstract
  • The generalized lifting scheme was developed by Joel Solé and Philippe Salembier and published in Solé's PhD dissertation. It is based on the classical lifting scheme and generalizes it by breaking out a restriction hidden in the scheme structure. The classical lifting scheme has three kinds of operations: 1. * A lazy wavelet transform splits signal in two new signals: the odd-samples signal denoted by and the even-samples signal denoted by . 2. * A prediction step computes a prediction for the odd samples, based on the even samples (or vice versa). This prediction is subtracted from the odd samples, creating an error signal . 3. * An update step recalibrates the low-frequency branch with some of the energy removed during subsampling. In the case of classical lifting, this is used in order to "prepare" the signal for the next prediction step. It uses the predicted odd samples to prepare the even ones (or vice versa). This update is subtracted from the even samples, producing the signal denoted by . The scheme is invertible due to its structure. In the receiver, the update step is computed first with its result added back to the even samples, and then it is possible to compute exactly the same prediction to add to the odd samples. In order to recover the original signal, the lazy wavelet transform has to be inverted. Generalized lifting scheme has the same three kinds of operations. However, this scheme avoids the addition-subtraction restriction that offered classical lifting, which has some consequences. For example, the design of all steps must guarantee the scheme invertibility (not guaranteed if the addition-subtraction restriction is avoided).
Link to the Wikipage edit URL
extraction datetime
Link to the Wikipage history URL
Wikipage page ID
page length (characters) of wiki page
Wikipage modification datetime
Wiki page out degree
Wikipage revision ID
Link to the Wikipage revision URL
dbp:wikiPageUsesTemplate
dct:subject
foaf:depiction
  • External Image
is foaf:primaryTopic of
is Wikipage redirect of
Faceted Search & Find service v1.17_git39 as of Aug 10 2019


Alternative Linked Data Documents: iSPARQL | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 08.03.3319 as of Sep 1 2020, on Linux (x86_64-generic-linux-glibc25), Single-Server Edition (61 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2020 OpenLink Software