About: Group contraction     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : yago:Science105999797, within Data Space : dbpedia-live.openlinksw.com associated with source document(s)
QRcode icon
http://dbpedia-live.openlinksw.com/describe/?url=http%3A%2F%2Fdbpedia.org%2Fresource%2FGroup_contraction

In theoretical physics, Eugene Wigner and Erdal İnönü have discussed the possibility to obtain from a given Lie group a different (non-isomorphic) Lie group by a group contraction with respect to a continuous subgroup of it. That amounts to a limiting operation on a parameter of the Lie algebra, altering the structure constants of this Lie algebra in a nontrivial singular manner, under suitable circumstances. For example, the Lie algebra of the 3D rotation group SO(3), [X1, X2] = X3, etc., may be rewritten by a change of variables Y1 = εX1, Y2 = εX2, Y3 = X3, as

AttributesValues
rdf:type
sameAs
foaf:isPrimaryTopicOf
rdfs:comment
  • In theoretical physics, Eugene Wigner and Erdal İnönü have discussed the possibility to obtain from a given Lie group a different (non-isomorphic) Lie group by a group contraction with respect to a continuous subgroup of it. That amounts to a limiting operation on a parameter of the Lie algebra, altering the structure constants of this Lie algebra in a nontrivial singular manner, under suitable circumstances. For example, the Lie algebra of the 3D rotation group SO(3), [X1, X2] = X3, etc., may be rewritten by a change of variables Y1 = εX1, Y2 = εX2, Y3 = X3, as
rdfs:label
  • Group contraction
has abstract
  • In theoretical physics, Eugene Wigner and Erdal İnönü have discussed the possibility to obtain from a given Lie group a different (non-isomorphic) Lie group by a group contraction with respect to a continuous subgroup of it. That amounts to a limiting operation on a parameter of the Lie algebra, altering the structure constants of this Lie algebra in a nontrivial singular manner, under suitable circumstances. For example, the Lie algebra of the 3D rotation group SO(3), [X1, X2] = X3, etc., may be rewritten by a change of variables Y1 = εX1, Y2 = εX2, Y3 = X3, as [Y1, Y2] = ε2 Y3, [Y2, Y3] = Y1, [Y3, Y1] = Y2. The contraction limit ε → 0 trivializes the first commutator and thus yields the non-isomorphic algebra of the plane Euclidean group, E2 ~ ISO(2). (This is isomorphic to the cylindrical group, describing motions of a point on the surface of a cylinder. It is the little group, or stabilizer subgroup, of null four-vectors in Minkowski space.) Specifically, the translation generators Y1, Y2, now generate the Abelian normal subgroup of E2 (cf. Group extension), the parabolic Lorentz transformations. Similar limits, of considerable application in physics (cf. Correspondence principles), contract * the de Sitter group SO(4, 1) ~ Sp(2, 2) to the Poincaré group ISO(3, 1), as the de Sitter radius diverges: R → ∞; or * the Poincaré group to the Galilei group, as the speed of light diverges: c → ∞; or * the Moyal bracket Lie algebra (equivalent to quantum commutators) to the Poisson bracket Lie algebra, in the classical limit as the Planck constant vanishes: ħ → 0.
Link to the Wikipage edit URL
Link from a Wikipage to an external page
extraction datetime
Link to the Wikipage history URL
Wikipage page ID
page length (characters) of wiki page
Wikipage modification datetime
Wiki page out degree
Wikipage revision ID
Link to the Wikipage revision URL
dbp:wikiPageUsesTemplate
dct:subject
is foaf:primaryTopic of
is Wikipage redirect of
Faceted Search & Find service v1.17_git39 as of Aug 10 2019


Alternative Linked Data Documents: iSPARQL | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 08.03.3319 as of Sep 1 2020, on Linux (x86_64-generic-linux-glibc25), Single-Server Edition (61 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2021 OpenLink Software