In mathematics, a Malcev algebra (or Maltsev algebra or Moufang–Lie algebra) over a field is a nonassociative algebra that is antisymmetric, so that and satisfies the Malcev identity They were first defined by Anatoly Maltsev (1955).
Attributes | Values |
---|
rdf:type
| |
sameAs
| |
foaf:isPrimaryTopicOf
| |
rdfs:comment
| - In mathematics, a Malcev algebra (or Maltsev algebra or Moufang–Lie algebra) over a field is a nonassociative algebra that is antisymmetric, so that and satisfies the Malcev identity They were first defined by Anatoly Maltsev (1955).
|
rdfs:label
| |
has abstract
| - In mathematics, a Malcev algebra (or Maltsev algebra or Moufang–Lie algebra) over a field is a nonassociative algebra that is antisymmetric, so that and satisfies the Malcev identity They were first defined by Anatoly Maltsev (1955). Malcev algebras play a role in the theory of Moufang loops that generalizes the role of Lie algebras in the theory of groups. Namely, just as the tangent space of the identity element of a Lie group forms a Lie algebra, the tangent space of the identity of a smooth Moufang loop forms a Malcev algebra. Moreover, just as a Lie group can be recovered from its Lie algebra under certain supplementary conditions, a smooth Moufang loop can be recovered from its Malcev algebra if certain supplementary conditions hold. For example, this is true for a connected, simply connected real-analytic Moufang loop.
|
Link to the Wikipage edit URL
| |
extraction datetime
| |
Link to the Wikipage history URL
| |
Wikipage page ID
| |
page length (characters) of wiki page
| |
Wikipage modification datetime
| |
Wiki page out degree
| |
Wikipage revision ID
| |
Link to the Wikipage revision URL
| |
dbp:wikiPageUsesTemplate
| |
dct:subject
| |
is foaf:primaryTopic
of | |
is Wikipage redirect
of | |