In mathematics, the symmetric algebra S(V) (also denoted Sym(V)) on a vector space V over a field K is a commutative algebra over K that contains V, and is, in some sense, minimal for this property. Here, "minimal" means that S(V) satisfies the following universal property: for every linear map f from V to a commutative algebra A, there is a unique algebra homomorphism such that where i is the inclusion of V in S(V). The symmetric algebra S(V) can be built as the quotient of the tensor algebra T(V) by the two-sided ideal generated by the elements of the form
Attributes | Values |
---|
rdf:type
| |
sameAs
| |
foaf:isPrimaryTopicOf
| |
differentFrom
| |
rdfs:comment
| - In mathematics, the symmetric algebra S(V) (also denoted Sym(V)) on a vector space V over a field K is a commutative algebra over K that contains V, and is, in some sense, minimal for this property. Here, "minimal" means that S(V) satisfies the following universal property: for every linear map f from V to a commutative algebra A, there is a unique algebra homomorphism such that where i is the inclusion of V in S(V). The symmetric algebra S(V) can be built as the quotient of the tensor algebra T(V) by the two-sided ideal generated by the elements of the form
- In mathematics, the symmetric algebra S(V) (also denoted Sym(V)) on a vector space V over a field K is a commutative algebra over K that contains V, and is, in some sense, minimal for this property. Here, "minimal" means that S(V) satisfies the following universal property: for every linear map f from V to a commutative algebra A, there is a unique algebra homomorphism such that where i is the inclusion map of V in S(V). The symmetric algebra S(V) can be built as the quotient of the tensor algebra T(V) by the two-sided ideal generated by the elements of the form
- In mathematics, the symmetric algebra S(V) (also denoted Sym(V)) on a vector space V over a field K is a commutative algebra over K that contains V, and is, in some sense, minimal for this property. Here, "minimal" means that S(V) satisfies the following universal property: for every linear map f from V to a commutative algebra A, there is a unique algebra homomorphism g : S(V) → A such that f = g ∘ i, where i is the inclusion map of V in S(V). All these definitions and properties extend naturally to the case where V is a module (not necessarily a free one) over a commutative ring.
|
rdfs:label
| |
has abstract
| - In mathematics, the symmetric algebra S(V) (also denoted Sym(V)) on a vector space V over a field K is a commutative algebra over K that contains V, and is, in some sense, minimal for this property. Here, "minimal" means that S(V) satisfies the following universal property: for every linear map f from V to a commutative algebra A, there is a unique algebra homomorphism such that where i is the inclusion of V in S(V). If B is a basis of V, the symmetric algebra S(V) can be identified, through a canonical isomorphism, to the polynomial ring K[B], where the elements of B are considered as indeterminates. Therefore, the symmetric algebra over V can be viewed as a "coordinate free" polynomial ring over V. The symmetric algebra S(V) can be built as the quotient of the tensor algebra T(V) by the two-sided ideal generated by the elements of the form All these definitions and properties extend naturally to the case where V is a module (not necessarily a free one) over a commutative ring.
- In mathematics, the symmetric algebra S(V) (also denoted Sym(V)) on a vector space V over a field K is a commutative algebra over K that contains V, and is, in some sense, minimal for this property. Here, "minimal" means that S(V) satisfies the following universal property: for every linear map f from V to a commutative algebra A, there is a unique algebra homomorphism such that where i is the inclusion map of V in S(V). If B is a basis of V, the symmetric algebra S(V) can be identified, through a canonical isomorphism, to the polynomial ring K[B], where the elements of B are considered as indeterminates. Therefore, the symmetric algebra over V can be viewed as a "coordinate free" polynomial ring over V. The symmetric algebra S(V) can be built as the quotient of the tensor algebra T(V) by the two-sided ideal generated by the elements of the form All these definitions and properties extend naturally to the case where V is a module (not necessarily a free one) over a commutative ring.
- In mathematics, the symmetric algebra S(V) (also denoted Sym(V)) on a vector space V over a field K is a commutative algebra over K that contains V, and is, in some sense, minimal for this property. Here, "minimal" means that S(V) satisfies the following universal property: for every linear map f from V to a commutative algebra A, there is a unique algebra homomorphism g : S(V) → A such that f = g ∘ i, where i is the inclusion map of V in S(V). If B is a basis of V, the symmetric algebra S(V) can be identified, through a canonical isomorphism, to the polynomial ring K[B], where the elements of B are considered as indeterminates. Therefore, the symmetric algebra over V can be viewed as a "coordinate free" polynomial ring over V. The symmetric algebra S(V) can be built as the quotient of the tensor algebra T(V) by the two-sided ideal generated by the elements of the form x ⊗ y − y ⊗ x. All these definitions and properties extend naturally to the case where V is a module (not necessarily a free one) over a commutative ring.
|
Link to the Wikipage edit URL
| |
Link from a Wikipage to an external page
| |
extraction datetime
| |
Link to the Wikipage history URL
| |
Wikipage page ID
| |
page length (characters) of wiki page
| |
Wikipage modification datetime
| |
Wiki page out degree
| |
Wikipage revision ID
| |
Link to the Wikipage revision URL
| |
dbp:wikiPageUsesTemplate
| |