Attributes  Values 

rdf:type
 
sameAs
 
foaf:isPrimaryTopicOf
 
differentFrom
 
rdfs:comment
  In mathematics, the symmetric algebra S(V) (also denoted Sym(V)) on a vector space V over a field K is a commutative algebra over K that contains V, and is, in some sense, minimal for this property. Here, "minimal" means that S(V) satisfies the following universal property: for every linear map f from V to a commutative algebra A, there is a unique algebra homomorphism such that where i is the inclusion of V in S(V). The symmetric algebra S(V) can be built as the quotient of the tensor algebra T(V) by the twosided ideal generated by the elements of the form
 In mathematics, the symmetric algebra S(V) (also denoted Sym(V)) on a vector space V over a field K is a commutative algebra over K that contains V, and is, in some sense, minimal for this property. Here, "minimal" means that S(V) satisfies the following universal property: for every linear map f from V to a commutative algebra A, there is a unique algebra homomorphism such that where i is the inclusion map of V in S(V). The symmetric algebra S(V) can be built as the quotient of the tensor algebra T(V) by the twosided ideal generated by the elements of the form
 In mathematics, the symmetric algebra S(V) (also denoted Sym(V)) on a vector space V over a field K is a commutative algebra over K that contains V, and is, in some sense, minimal for this property. Here, "minimal" means that S(V) satisfies the following universal property: for every linear map f from V to a commutative algebra A, there is a unique algebra homomorphism g : S(V) → A such that f = g ∘ i, where i is the inclusion map of V in S(V). All these definitions and properties extend naturally to the case where V is a module (not necessarily a free one) over a commutative ring.

rdfs:label
 
has abstract
  In mathematics, the symmetric algebra S(V) (also denoted Sym(V)) on a vector space V over a field K is a commutative algebra over K that contains V, and is, in some sense, minimal for this property. Here, "minimal" means that S(V) satisfies the following universal property: for every linear map f from V to a commutative algebra A, there is a unique algebra homomorphism such that where i is the inclusion of V in S(V). If B is a basis of V, the symmetric algebra S(V) can be identified, through a canonical isomorphism, to the polynomial ring K[B], where the elements of B are considered as indeterminates. Therefore, the symmetric algebra over V can be viewed as a "coordinate free" polynomial ring over V. The symmetric algebra S(V) can be built as the quotient of the tensor algebra T(V) by the twosided ideal generated by the elements of the form All these definitions and properties extend naturally to the case where V is a module (not necessarily a free one) over a commutative ring.
 In mathematics, the symmetric algebra S(V) (also denoted Sym(V)) on a vector space V over a field K is a commutative algebra over K that contains V, and is, in some sense, minimal for this property. Here, "minimal" means that S(V) satisfies the following universal property: for every linear map f from V to a commutative algebra A, there is a unique algebra homomorphism such that where i is the inclusion map of V in S(V). If B is a basis of V, the symmetric algebra S(V) can be identified, through a canonical isomorphism, to the polynomial ring K[B], where the elements of B are considered as indeterminates. Therefore, the symmetric algebra over V can be viewed as a "coordinate free" polynomial ring over V. The symmetric algebra S(V) can be built as the quotient of the tensor algebra T(V) by the twosided ideal generated by the elements of the form All these definitions and properties extend naturally to the case where V is a module (not necessarily a free one) over a commutative ring.
 In mathematics, the symmetric algebra S(V) (also denoted Sym(V)) on a vector space V over a field K is a commutative algebra over K that contains V, and is, in some sense, minimal for this property. Here, "minimal" means that S(V) satisfies the following universal property: for every linear map f from V to a commutative algebra A, there is a unique algebra homomorphism g : S(V) → A such that f = g ∘ i, where i is the inclusion map of V in S(V). If B is a basis of V, the symmetric algebra S(V) can be identified, through a canonical isomorphism, to the polynomial ring K[B], where the elements of B are considered as indeterminates. Therefore, the symmetric algebra over V can be viewed as a "coordinate free" polynomial ring over V. The symmetric algebra S(V) can be built as the quotient of the tensor algebra T(V) by the twosided ideal generated by the elements of the form x ⊗ y − y ⊗ x. All these definitions and properties extend naturally to the case where V is a module (not necessarily a free one) over a commutative ring.

Link to the Wikipage edit URL
 
Link from a Wikipage to an external page
 
extraction datetime
 
Link to the Wikipage history URL
 
Wikipage page ID
 
page length (characters) of wiki page
 
Wikipage modification datetime
 
Wiki page out degree
 
Wikipage revision ID
 
Link to the Wikipage revision URL
 
dbp:wikiPageUsesTemplate
 