Attributes  Values 

rdf:type
 
sameAs
 
foaf:isPrimaryTopicOf
 
rdfs:comment
  Twistor theory was proposed by Roger Penrose in 1967 as a possible path to quantum gravity and has evolved into a branch of theoretical and mathematical physics. Penrose proposed that twistor space should be the basic arena for physics from which spacetime itself should emerge. It leads to a powerful set of mathematical tools that have applications to differential and integral geometry, nonlinear differential equations and representation theory and in physics to relativity and quantum field theory, in particular to scattering amplitudes.
 In theoretical physics, twistor theory was proposed by Roger Penrose in 1967 as a possible path to quantum gravity and has evolved into a branch of theoretical and mathematical physics. Penrose proposed that twistor space should be the basic arena for physics from which spacetime itself should emerge. It leads to a powerful set of mathematical tools that have applications to differential and integral geometry, nonlinear differential equations and representation theory and in physics to general relativity and quantum field theory, in particular to scattering amplitudes.

rdfs:label
 
has abstract
  Twistor theory was proposed by Roger Penrose in 1967 as a possible path to quantum gravity and has evolved into a branch of theoretical and mathematical physics. Penrose proposed that twistor space should be the basic arena for physics from which spacetime itself should emerge. It leads to a powerful set of mathematical tools that have applications to differential and integral geometry, nonlinear differential equations and representation theory and in physics to relativity and quantum field theory, in particular to scattering amplitudes.
 In theoretical physics, twistor theory was proposed by Roger Penrose in 1967 as a possible path to quantum gravity and has evolved into a branch of theoretical and mathematical physics. Penrose proposed that twistor space should be the basic arena for physics from which spacetime itself should emerge. It leads to a powerful set of mathematical tools that have applications to differential and integral geometry, nonlinear differential equations and representation theory and in physics to general relativity and quantum field theory, in particular to scattering amplitudes.

Link to the Wikipage edit URL
 
Link from a Wikipage to an external page
 
extraction datetime
 
Link to the Wikipage history URL
 
Wikipage page ID
 
page length (characters) of wiki page
 