Attributes  Values 

rdf:type
 
sameAs
 
foaf:isPrimaryTopicOf
 
rdfs:comment
  In mathematics, a vertex operator algebra (VOA) is an algebraic structure that plays an important role in twodimensional conformal field theory and string theory. In addition to physical applications, vertex operator algebras have proven useful in purely mathematical contexts such as monstrous moonshine and the geometric Langlands correspondence.

rdfs:label
 
has abstract
  In mathematics, a vertex operator algebra (VOA) is an algebraic structure that plays an important role in twodimensional conformal field theory and string theory. In addition to physical applications, vertex operator algebras have proven useful in purely mathematical contexts such as monstrous moonshine and the geometric Langlands correspondence. The related notion of vertex algebra was introduced by Richard Borcherds in 1986, motivated by a construction of an infinitedimensional Lie algebra due to Igor Frenkel. In the course of this construction, one employs a Fock space that admits an action of vertex operators attached to lattice vectors. Borcherds formulated the notion of vertex algebra by axiomatizing the relations between the lattice vertex operators, producing an algebraic structure that allows one to construct new Lie algebras by following Frenkel's method. The notion of vertex operator algebra was introduced as a modification of the notion of vertex algebra, by Frenkel, James Lepowsky, and Arne Meurman in 1988, as part of their project to construct the moonshine module. They observed that many vertex algebras that appear in nature have a useful additional structure (an action of the Virasoro algebra), and satisfy a boundedbelow property with respect to an energy operator. Motivated by this observation, they added the Virasoro action and boundedbelow property as axioms. We now have posthoc motivation for these notions from physics, together with several interpretations of the axioms that were not initially known. Physically, the vertex operators arising from holomorphic field insertions at points (i.e., vertices) in two dimensional conformal field theory admit operator product expansions when insertions collide, and these satisfy precisely the relations specified in the definition of vertex operator algebra. Indeed, the axioms of a vertex operator algebra are a formal algebraic interpretation of what physicists call chiral algebras, or "algebras of chiral symmetries", where these symmetries describe the Ward identities satisfied by a given conformal field theory, including conformal invariance. Other formulations of the vertex algebra axioms include Borcherds's later work on singular commutative rings, algebras over certain operads on curves introduced by Huang, Kriz, and others, and Dmoduletheoretic objects called chiral algebras introduced by Alexander Beilinson and Vladimir Drinfeld. While related, these chiral algebras are not precisely the same as the objects with the same name that physicists use. Important basic examples of vertex operator algebras include lattice VOAs (modeling lattice conformal field theories), VOAs given by representations of affine Kac–Moody algebras (from the WZW model), the Virasoro VOAs (i.e., VOAs corresponding to representations of the Virasoro algebra) and the moonshine module V♮, which is distinguished by its monster symmetry. More sophisticated examples such as and the on a complex manifold arise in geometric representation theory and mathematical physics.

Link to the Wikipage edit URL
 
Link from a Wikipage to an external page
 
extraction datetime
 
Link to the Wikipage history URL
 
Wikipage page ID
 
page length (characters) of wiki page
 
Wikipage modification datetime
 
Wiki page out degree
 
Wikipage revision ID
 
Link to the Wikipage revision URL
 
dbp:wikiPageUsesTemplate
 
dct:subject
 
is foaf:primaryTopic
of  
is Wikipage disambiguates
of  
is Wikipage redirect
of  