# ## About: Weyl algebraGotoSponge NotDistinct Permalink

An Entity of Type : yago:Science105999797, within Data Space : dbpedia-live.openlinksw.com associated with source document(s)  In abstract algebra, the Weyl algebra is the ring of differential operators with polynomial coefficients (in one variable), namely expressions of the form More precisely, let F be the underlying field, and let F[X] be the ring of polynomials in one variable, X, with coefficients in F. Then each fi lies in F[X]. ∂X is the derivative with respect to X. The algebra is generated by X and ∂X . The Weyl algebra is an example of a simple ring that is not a matrix ring over a division ring. It is also a noncommutative example of a domain, and an example of an Ore extension.

AttributesValues
rdf:type
sameAs
foaf:isPrimaryTopicOf
rdfs:comment
• In abstract algebra, the Weyl algebra is the ring of differential operators with polynomial coefficients (in one variable), namely expressions of the form More precisely, let F be the underlying field, and let F[X] be the ring of polynomials in one variable, X, with coefficients in F. Then each fi lies in F[X]. ∂X is the derivative with respect to X. The algebra is generated by X and ∂X . The Weyl algebra is an example of a simple ring that is not a matrix ring over a division ring. It is also a noncommutative example of a domain, and an example of an Ore extension.
rdfs:label
• Weyl algebra
has abstract
• In abstract algebra, the Weyl algebra is the ring of differential operators with polynomial coefficients (in one variable), namely expressions of the form More precisely, let F be the underlying field, and let F[X] be the ring of polynomials in one variable, X, with coefficients in F. Then each fi lies in F[X]. ∂X is the derivative with respect to X. The algebra is generated by X and ∂X . The Weyl algebra is an example of a simple ring that is not a matrix ring over a division ring. It is also a noncommutative example of a domain, and an example of an Ore extension. The Weyl algebra is isomorphic to the quotient of the free algebra on two generators, X and Y, by the ideal generated by the element The Weyl algebra is the first in an infinite family of algebras, also known as Weyl algebras. The n-th Weyl algebra, An, is the ring of differential operators with polynomial coefficients in n variables. It is generated by Xi and ∂Xi, i = 1, ..., n. Weyl algebras are named after Hermann Weyl, who introduced them to study the Heisenberg uncertainty principle in quantum mechanics. It is a quotient of the universal enveloping algebra of the Heisenberg algebra, the Lie algebra of the Heisenberg group, by setting the central element of the Heisenberg algebra (namely [X,Y]) equal to the unit of the universal enveloping algebra (called 1 above). The Weyl algebra is also referred to as the symplectic Clifford algebra. Weyl algebras represent the same structure for symplectic bilinear forms that Clifford algebras represent for non-degenerate symmetric bilinear forms.
Link to the Wikipage edit URL
Link from a Wikipage to an external page
extraction datetime
Link to the Wikipage history URL
Wikipage page ID
page length (characters) of wiki page
Wikipage modification datetime
Wiki page out degree
Wikipage revision ID
Link to the Wikipage revision URL
dbp:wikiPageUsesTemplate
dct:subject
is foaf:primaryTopic of
is differentFrom of
is Wikipage redirect of
Faceted Search & Find service v1.17_git39 as of Aug 10 2019   OpenLink Virtuoso version 08.03.3319 as of Sep 1 2020, on Linux (x86_64-generic-linux-glibc25), Single-Server Edition (61 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2021 OpenLink Software