Property Value
dbo:abstract
  • In convex geometry Carathéodory's theorem states that if a point x of Rd lies in the convex hull of a set P, there is a subset P′ of P consisting of d + 1 or fewer points such that x lies in the convex hull of P′. Equivalently, x lies in an r-simplex with vertices in P, where r ≤ d {\displaystyle r\leq d} . The result is named for Constantin Carathéodory, who proved the theorem in 1911 for the case when P is compact. In 1914 Ernst Steinitz expanded Carathéodory's theorem for any sets P in Rd.For example, consider a set P = {(0,0), (0,1), (1,0), (1,1)} which is a subset of R2. The convex hull of this set is a square. Consider now a point x = (1/4, 1/4), which is in the convex hull of P. We can then construct a set {(0,0),(0,1),(1,0)} = P′, the convex hull of which is a triangle and encloses x, and thus the theorem works for this instance, since |P′| = 3. It may help to visualise Carathéodory's theorem in 2 dimensions, as saying that we can construct a triangle consisting of points from P that encloses any point in P. (en)
dbo:thumbnail
dbo:wikiPageEditLink
dbo:wikiPageExternalLink
dbo:wikiPageExtracted
  • 2016-09-06 02:15:05Z (xsd:date)
  • 2016-10-21 16:05:08Z (xsd:date)
  • 2016-10-28 17:00:40Z (xsd:date)
  • 2016-11-16 18:50:57Z (xsd:date)
  • 2016-11-16 19:14:45Z (xsd:date)
  • 2016-11-17 01:09:32Z (xsd:date)
  • 2016-11-17 01:11:29Z (xsd:date)
  • 2016-11-17 01:23:46Z (xsd:date)
  • 2016-11-17 01:51:39Z (xsd:date)
  • 2016-11-17 02:39:57Z (xsd:date)
  • 2016-11-17 02:40:19Z (xsd:date)
  • 2017-09-27 23:38:05Z (xsd:date)
  • 2018-04-28 07:33:10Z (xsd:date)
dbo:wikiPageHistoryLink
dbo:wikiPageID
  • 892014 (xsd:integer)
dbo:wikiPageLength
  • 5827 (xsd:integer)
  • 5849 (xsd:integer)
  • 6105 (xsd:integer)
  • 6149 (xsd:integer)
  • 6176 (xsd:integer)
  • 6187 (xsd:integer)
  • 6432 (xsd:integer)
  • 7032 (xsd:integer)
  • 7036 (xsd:integer)
  • 7372 (xsd:integer)
dbo:wikiPageModified
  • 2016-09-04 00:06:09Z (xsd:date)
  • 2016-11-16 18:50:57Z (xsd:date)
  • 2016-11-16 19:14:43Z (xsd:date)
  • 2016-11-17 01:09:30Z (xsd:date)
  • 2016-11-17 01:11:28Z (xsd:date)
  • 2016-11-17 01:23:45Z (xsd:date)
  • 2016-11-17 01:51:38Z (xsd:date)
  • 2016-11-17 02:39:56Z (xsd:date)
  • 2016-11-17 02:40:18Z (xsd:date)
  • 2018-02-18 20:54:12Z (xsd:date)
dbo:wikiPageOutDegree
  • 22 (xsd:integer)
  • 23 (xsd:integer)
  • 24 (xsd:integer)
dbo:wikiPageRevisionID
  • 737614049 (xsd:integer)
  • 749896603 (xsd:integer)
  • 749899648 (xsd:integer)
  • 749949035 (xsd:integer)
  • 749949332 (xsd:integer)
  • 749951095 (xsd:integer)
  • 749954776 (xsd:integer)
  • 749961735 (xsd:integer)
  • 749961780 (xsd:integer)
  • 826388246 (xsd:integer)
dbo:wikiPageRevisionLink
dbp:wikiPageUsesTemplate
dct:subject
rdf:type
rdfs:comment
  • In convex geometry Carathéodory's theorem states that if a point x of Rd lies in the convex hull of a set P, there is a subset P′ of P consisting of d + 1 or fewer points such that x lies in the convex hull of P′. Equivalently, x lies in an r-simplex with vertices in P, where r ≤ d {\displaystyle r\leq d} . The result is named for Constantin Carathéodory, who proved the theorem in 1911 for the case when P is compact. (en)
rdfs:label
  • Carathéodory's theorem (convex hull) (en)
owl:sameAs
foaf:depiction
foaf:isPrimaryTopicOf
is dbo:wikiPageDisambiguates of
is dbo:wikiPageRedirects of