In mathematics and functional analysis a direct integral is a generalization of the concept of direct sum. The theory is most developed for direct integrals of Hilbert spaces and direct integrals of von Neumann algebras. The concept was introduced in 1949 by John von Neumann in one of the papers in the series On Rings of Operators.

Property Value
dbo:abstract
• In mathematics and functional analysis a direct integral is a generalization of the concept of direct sum. The theory is most developed for direct integrals of Hilbert spaces and direct integrals of von Neumann algebras. The concept was introduced in 1949 by John von Neumann in one of the papers in the series On Rings of Operators. One of von Neumann's goals in this paper was to reduce the classification of (what are now called) von Neumann algebras on separable Hilbert spaces to the classification of so-called factors. Factors are analogous to full matrix algebras over a field, and von Neumann wanted to prove a continuous analogue of the Artinâ€“Wedderburn theorem classifying semi-simple rings.Results on direct integrals can be viewed as generalizations of results about finite-dimensional C*-algebras of matrices; in this case the results are easy to prove directly. The infinite-dimensional case is complicated by measure-theoretic technicalities.Direct integral theory was also used by George Mackey in his analysis of systems of imprimitivity and his general theory of induced representations of locally compact separable groups. (en)
dbo:wikiPageExtracted
• 2017-05-09 07:52:24Z (xsd:date)
• 2017-09-29 04:01:15Z (xsd:date)
• 2018-04-29 10:20:43Z (xsd:date)
dbo:wikiPageID
• 1256105 (xsd:integer)
dbo:wikiPageLength
• 16424 (xsd:integer)
dbo:wikiPageModified
• 2017-11-22 07:22:20Z (xsd:date)
dbo:wikiPageOutDegree
• 27 (xsd:integer)
dbo:wikiPageRevisionID
• 811537409 (xsd:integer)
dbp:date
• September 2015 (en)
• March 2016 (en)
dbp:reason
• Is this X assumed in advance to be a Borel space, or to be a standard Borel space? (en)
• What is l^2 ? (en)
dbp:wikiPageUsesTemplate
dct:subject
rdf:type
rdfs:comment
• In mathematics and functional analysis a direct integral is a generalization of the concept of direct sum. The theory is most developed for direct integrals of Hilbert spaces and direct integrals of von Neumann algebras. The concept was introduced in 1949 by John von Neumann in one of the papers in the series On Rings of Operators. (en)
rdfs:label
• Direct integral (en)
owl:sameAs
foaf:isPrimaryTopicOf
is dbo:knownFor of
is dbo:wikiPageRedirects of
is rdfs:seeAlso of
is foaf:primaryTopic of