The Stone–Geary utility function takes the form U = ∏ i ( q i − γ i ) β i {\displaystyle U=\prod _{i}(q_{i}-\gamma _{i})^{\beta _{i}}} where U {\displaystyle U} is utility, q i {\displaystyle q_{i}} is consumption of good i {\displaystyle i} , and β {\displaystyle \beta } and γ {\displaystyle \gamma } are parameters.For γ i = 0 {\displaystyle \gamma _{i}=0} , the Stone–Geary function reduces to the generalised Cobb–Douglas function.The Stone–Geary utility function gives rise to the Linear Expenditure System, in which the demand function equals q i = γ i + β i p i ( y − ∑ j γ j p j ) {\displaystyle q_{i}=\gamma _{i}+{\frac {\beta _{i}}{p_{i}}}(y-\sum _{j}\gamma _{j}p_{j})} where y {\displaystyle y} is total expenditure, and p i {\displaystyle p_{i}} is the price of good i {\displaystyle i} .The Stone–Geary utility function was first derived by Roy C.

Property Value
dbo:abstract
  • The Stone–Geary utility function takes the form U = ∏ i ( q i − γ i ) β i {\displaystyle U=\prod _{i}(q_{i}-\gamma _{i})^{\beta _{i}}} where U {\displaystyle U} is utility, q i {\displaystyle q_{i}} is consumption of good i {\displaystyle i} , and β {\displaystyle \beta } and γ {\displaystyle \gamma } are parameters.For γ i = 0 {\displaystyle \gamma _{i}=0} , the Stone–Geary function reduces to the generalised Cobb–Douglas function.The Stone–Geary utility function gives rise to the Linear Expenditure System, in which the demand function equals q i = γ i + β i p i ( y − ∑ j γ j p j ) {\displaystyle q_{i}=\gamma _{i}+{\frac {\beta _{i}}{p_{i}}}(y-\sum _{j}\gamma _{j}p_{j})} where y {\displaystyle y} is total expenditure, and p i {\displaystyle p_{i}} is the price of good i {\displaystyle i} .The Stone–Geary utility function was first derived by Roy C. Geary, in a comment on earlier work by Lawrence Klein and Herman Rubin. Richard Stone was the first to estimate the Linear Expenditure System. (en)
dbo:wikiPageEditLink
dbo:wikiPageExternalLink
dbo:wikiPageExtracted
  • 2016-08-23 05:40:32Z (xsd:date)
  • 2018-05-07 00:59:03Z (xsd:date)
dbo:wikiPageHistoryLink
dbo:wikiPageID
  • 15182523 (xsd:integer)
dbo:wikiPageLength
  • 2767 (xsd:integer)
dbo:wikiPageModified
  • 2015-10-03 20:51:02Z (xsd:date)
dbo:wikiPageOutDegree
  • 7 (xsd:integer)
dbo:wikiPageRevisionID
  • 683987250 (xsd:integer)
dbo:wikiPageRevisionLink
dbp:wikiPageUsesTemplate
dct:subject
rdfs:comment
  • The Stone–Geary utility function takes the form U = ∏ i ( q i − γ i ) β i {\displaystyle U=\prod _{i}(q_{i}-\gamma _{i})^{\beta _{i}}} where U {\displaystyle U} is utility, q i {\displaystyle q_{i}} is consumption of good i {\displaystyle i} , and β {\displaystyle \beta } and γ {\displaystyle \gamma } are parameters.For γ i = 0 {\displaystyle \gamma _{i}=0} , the Stone–Geary function reduces to the generalised Cobb–Douglas function.The Stone–Geary utility function gives rise to the Linear Expenditure System, in which the demand function equals q i = γ i + β i p i ( y − ∑ j γ j p j ) {\displaystyle q_{i}=\gamma _{i}+{\frac {\beta _{i}}{p_{i}}}(y-\sum _{j}\gamma _{j}p_{j})} where y {\displaystyle y} is total expenditure, and p i {\displaystyle p_{i}} is the price of good i {\displaystyle i} .The Stone–Geary utility function was first derived by Roy C. (en)
rdfs:label
  • Stone–Geary utility function (en)
owl:sameAs
foaf:isPrimaryTopicOf
is dbo:wikiPageRedirects of