In the context of a module M over a ring R, the top of M is the largest semisimple quotient module of M if it exists. For finite-dimensional k-algebras (k a field), if rad(M) denotes the intersection of all proper maximal submodules of M (the radical of the module), then the top of M is M/rad(M). In the case of local rings with maximal ideal P, the top of M is M/PM. In general if R is a semilocal ring (=semi-artinian ring), that is, if R/Rad(R) is an Artinian ring, where Rad(R) is the Jacobson radical of R, then M/rad(M) is a semisimple module and is the top of M. This includes the cases of local rings and finite dimensional algebras over fields.

Property Value
dbo:abstract
• In the context of a module M over a ring R, the top of M is the largest semisimple quotient module of M if it exists. For finite-dimensional k-algebras (k a field), if rad(M) denotes the intersection of all proper maximal submodules of M (the radical of the module), then the top of M is M/rad(M). In the case of local rings with maximal ideal P, the top of M is M/PM. In general if R is a semilocal ring (=semi-artinian ring), that is, if R/Rad(R) is an Artinian ring, where Rad(R) is the Jacobson radical of R, then M/rad(M) is a semisimple module and is the top of M. This includes the cases of local rings and finite dimensional algebras over fields. (en)
dbo:wikiPageExtracted
• 2019-06-19 23:57:52Z (xsd:date)
dbo:wikiPageID
• 21094724 (xsd:integer)
dbo:wikiPageLength
• 1169 (xsd:integer)
dbo:wikiPageModified
• 2017-06-20 12:59:40Z (xsd:date)
dbo:wikiPageOutDegree
• 15 (xsd:integer)
dbo:wikiPageRevisionID
• 786601751 (xsd:integer)
dbp:wikiPageUsesTemplate
dct:subject
rdfs:comment
• In the context of a module M over a ring R, the top of M is the largest semisimple quotient module of M if it exists. For finite-dimensional k-algebras (k a field), if rad(M) denotes the intersection of all proper maximal submodules of M (the radical of the module), then the top of M is M/rad(M). In the case of local rings with maximal ideal P, the top of M is M/PM. In general if R is a semilocal ring (=semi-artinian ring), that is, if R/Rad(R) is an Artinian ring, where Rad(R) is the Jacobson radical of R, then M/rad(M) is a semisimple module and is the top of M. This includes the cases of local rings and finite dimensional algebras over fields. (en)
rdfs:label
• Top (mathematics) (en)
owl:sameAs
foaf:isPrimaryTopicOf
is dbo:wikiPageDisambiguates of
is foaf:primaryTopic of