Property Value
dbo:abstract
  • In number theory, Wilson's theorem states that a natural number n > 1 is a prime number if and only if the product of all the positive integers less than n is one less than a multiple of n. That is (using the notations of modular arithmetic), the factorial satisfies exactly when n is a prime number. In less technical terms, any number n is a prime number if, and only if, (n − 1)! + 1 is divisible by n. (en)
dbo:wikiPageEditLink
dbo:wikiPageExternalLink
dbo:wikiPageExtracted
  • 2019-06-20 14:17:39Z (xsd:date)
dbo:wikiPageHistoryLink
dbo:wikiPageID
  • 227323 (xsd:integer)
dbo:wikiPageLength
  • 15317 (xsd:integer)
dbo:wikiPageModified
  • 2019-06-15 22:19:56Z (xsd:date)
dbo:wikiPageOutDegree
  • 38 (xsd:integer)
dbo:wikiPageRevisionID
  • 902014264 (xsd:integer)
dbo:wikiPageRevisionLink
dbp:wikiPageUsesTemplate
dct:subject
rdf:type
rdfs:comment
  • In number theory, Wilson's theorem states that a natural number n > 1 is a prime number if and only if the product of all the positive integers less than n is one less than a multiple of n. That is (using the notations of modular arithmetic), the factorial satisfies exactly when n is a prime number. In less technical terms, any number n is a prime number if, and only if, (n − 1)! + 1 is divisible by n. (en)
rdfs:label
  • Wilson's theorem (en)
owl:sameAs
foaf:isPrimaryTopicOf
is dbo:wikiPageDisambiguates of
is dbo:wikiPageRedirects of
is foaf:primaryTopic of