This HTML5 document contains 47 embedded RDF statements represented using HTML+Microdata notation.

The embedded RDF content will be recognized by any processor of HTML5 Microdata.

PrefixNamespace IRI
dcthttp://purl.org/dc/terms/
yago-reshttp://yago-knowledge.org/resource/
dbohttp://dbpedia.org/ontology/
foafhttp://xmlns.com/foaf/0.1/
dbpedia-wikidatahttp://wikidata.dbpedia.org/resource/
n20https://books.google.com/books?id=ern6j-9vjSgC&pg=
n4http://en.wikipedia.org/w/index.php?title=Hausdorff–Young_inequality&action=
yagohttp://dbpedia.org/class/yago/
n9http://books.google.com/books?id=ern6j-9vjSgC&pg=
dbthttp://dbpedia.org/resource/Template:
rdfshttp://www.w3.org/2000/01/rdf-schema#
n17http://rdf.freebase.com/ns/m.
rdfhttp://www.w3.org/1999/02/22-rdf-syntax-ns#
n13http://wikidata.org/entity/
owlhttp://www.w3.org/2002/07/owl#
wikipedia-enhttp://en.wikipedia.org/wiki/
dbphttp://dbpedia.org/property/
dbchttp://dbpedia.org/resource/Category:
n19http://en.wikipedia.org/w/index.php?title=Hausdorff–Young_inequality&oldid=
xsdhhttp://www.w3.org/2001/XMLSchema#
dbrhttp://dbpedia.org/resource/
Subject Item
dbr:Hausdorff–Young_inequality
rdf:type
yago:Abstraction100002137 yago:Quality104723816 yago:Attribute100024264 yago:Inequalities yago:Inequality104752221 yago:Difference104748836
owl:sameAs
yago-res:Hausdorff–Young_inequality n13:Q5682823 n17:080gsq0 dbpedia-wikidata:Q5682823
foaf:isPrimaryTopicOf
wikipedia-en:Hausdorff–Young_inequality
rdfs:comment
In mathematics, the Hausdorff−Young inequality bounds the Lq-norm of the Fourier coefficients of a periodic function for q ≥ 2. William Henry Young (1913) proved the inequality for some special values of q, and Hausdorff (1923) proved it in general.
rdfs:label
Hausdorff–Young inequality
dbo:abstract
In mathematics, the Hausdorff−Young inequality bounds the Lq-norm of the Fourier coefficients of a periodic function for q ≥ 2. William Henry Young (1913) proved the inequality for some special values of q, and Hausdorff (1923) proved it in general. More generally the inequality also applies to the Fourier transform of a function on a locally compact group, such as Rn, and in this case Babenko (1961) and Beckner (1975) gave a sharper form of it called the Babenko–Beckner inequality.We consider the Fourier operator, namely let T be the operator that takes a function f {\displaystyle f} on the unit circle and outputs the sequence of its Fourier coefficients f ^ ( n ) = 1 2 π ∫ 0 2 π e − i n x f ( x ) d x , n = 0 , ± 1 , ± 2 , … . {\displaystyle {\widehat {f}}(n)={\frac {1}{2\pi }}\int _{0}^{2\pi }e^{-inx}f(x)\,dx,\quad n=0,\pm 1,\pm 2,\dots .} Parseval's theorem shows that T is bounded from L 2 {\displaystyle L^{2}} to ℓ 2 {\displaystyle \ell ^{2}} with norm 1. On the other hand, clearly, | ( T f ) ( n ) | = | f ^ ( n ) | = | 1 2 π ∫ 0 2 π e − i n t f ( t ) d t | ≤ 1 2 π ∫ 0 2 π | f ( t ) | d t {\displaystyle |(Tf)(n)|=|{\widehat {f}}(n)|=\left|{\frac {1}{2\pi }}\int _{0}^{2\pi }e^{-int}f(t)\,dt\right|\leq {\frac {1}{2\pi }}\int _{0}^{2\pi }|f(t)|\,dt} so T is bounded from L 1 {\displaystyle L^{1}} to ℓ ∞ {\displaystyle \ell ^{\infty }} with norm 1. Therefore we may invoke the Riesz–Thorin theorem to get, for any 1 < p < 2 that T, as an operator from L p {\displaystyle L^{p}} to ℓ q {\displaystyle \ell ^{q}} , is bounded with norm 1, where 1 p + 1 q = 1. {\displaystyle {\frac {1}{p}}+{\frac {1}{q}}=1.} In a short formula, this says that ( ∑ n = − ∞ ∞ | f ^ ( n ) | q ) 1 / q ≤ ( 1 2 π ∫ 0 2 π | f ( t ) | p d t ) 1 / p . {\displaystyle \left(\sum _{n=-\infty }^{\infty }|{\widehat {f}}(n)|^{q}\right)^{1/q}\leq \left({\frac {1}{2\pi }}\int _{0}^{2\pi }|f(t)|^{p}\,dt\right)^{1/p}.} This is the well known Hausdorff–Young inequality. For p > 2 the natural extrapolation of this inequality fails, and the fact that a function belongs to L p {\displaystyle L^{p}} , does not give any additional information on the order of growth of its Fourier series beyond the fact that it is in ℓ 2 {\displaystyle \ell ^{2}} .
dbo:wikiPageEditLink
n4:edit
dbo:wikiPageExternalLink
n9:PA94 n20:PA94
dbo:wikiPageExtracted
2017-09-30T22:21:30Z 2018-05-01T03:57:55Z 2016-10-24T08:26:29Z 2016-09-09T03:03:36Z
dbo:wikiPageHistoryLink
n4:history
dbo:wikiPageID
22386332
dbo:wikiPageLength
4114 4128
dbo:wikiPageModified
2014-09-24T13:00:17Z 2017-12-09T01:17:23Z
dbo:wikiPageOutDegree
14
dbo:wikiPageRevisionID
626892195 814474478
dbo:wikiPageRevisionLink
n19:814474478 n19:626892195
dbp:authorlink
William Henry Young
dbp:first
William Henry
dbp:last
Young
dbp:wikiPageUsesTemplate
dbt:Citation dbt:Harv dbt:Harvs dbt:Harvtxt
dbp:year
1913
dct:subject
dbc:Fourier_analysis dbc:Inequalities
Subject Item
dbr:Hausdorff-Young_inequality
dbo:wikiPageRedirects
dbr:Hausdorff–Young_inequality
Subject Item
dbr:Hausdorff−Young_inequality
dbo:wikiPageRedirects
dbr:Hausdorff–Young_inequality
Subject Item
wikipedia-en:Hausdorff–Young_inequality
foaf:primaryTopic
dbr:Hausdorff–Young_inequality
Subject Item
dbr:Hausdorff-Young_theorem
dbo:wikiPageRedirects
dbr:Hausdorff–Young_inequality
Subject Item
dbr:Hausdorff–Young_theorem
dbo:wikiPageRedirects
dbr:Hausdorff–Young_inequality