This HTML5 document contains 44 embedded RDF statements represented using HTML+Microdata notation.

The embedded RDF content will be recognized by any processor of HTML5 Microdata.

PrefixNamespace IRI
dbpedia-dehttp://de.dbpedia.org/resource/
dcthttp://purl.org/dc/terms/
n12https://books.google.com/books?id=
dbohttp://dbpedia.org/ontology/
foafhttp://xmlns.com/foaf/0.1/
n11http://en.wikipedia.org/w/index.php?title=Cartan's_criterion&oldid=
dbpedia-wikidatahttp://wikidata.dbpedia.org/resource/
yagohttp://dbpedia.org/class/yago/
n20http://en.wikipedia.org/wiki/Cartan'
dbthttp://dbpedia.org/resource/Template:
rdfshttp://www.w3.org/2000/01/rdf-schema#
n10http://en.wikipedia.org/w/index.php?title=Cartan's_criterion&action=
n14http://rdf.freebase.com/ns/m.
n15http://yago-knowledge.org/resource/Cartan'
rdfhttp://www.w3.org/1999/02/22-rdf-syntax-ns#
n7http://wikidata.org/entity/
owlhttp://www.w3.org/2002/07/owl#
dbpedia-ithttp://it.dbpedia.org/resource/
dbphttp://dbpedia.org/property/
dbchttp://dbpedia.org/resource/Category:
xsdhhttp://www.w3.org/2001/XMLSchema#
n2http://dbpedia.org/resource/Cartan'
Subject Item
n2:s_criterion
rdf:type
yago:Algebra106012726 yago:Mathematics106000644 yago:KnowledgeDomain105999266 yago:Discipline105996646 yago:PsychologicalFeature100023100 yago:Science105999797 yago:Content105809192 yago:Cognition100023271 yago:LieAlgebras yago:PureMathematics106003682 yago:Abstraction100002137
owl:sameAs
dbpedia-it:Criterio_di_Cartan n7:Q5047038 dbpedia-de:Cartan-Kriterium n14:02p737m n15:s_criterion dbpedia-wikidata:Q5047038
foaf:isPrimaryTopicOf
n20:s_criterion
rdfs:comment
In mathematics, Cartan's criterion gives conditions for a Lie algebra in characteristic 0 to be solvable, which implies a related criterion for the Lie algebra to be semisimple. It is based on the notion of the Killing form, a symmetric bilinear form on defined by the formula where tr denotes the trace of a linear operator. The criterion was introduced by Élie Cartan ().
rdfs:label
Cartan's criterion
dbo:abstract
In mathematics, Cartan's criterion gives conditions for a Lie algebra in characteristic 0 to be solvable, which implies a related criterion for the Lie algebra to be semisimple. It is based on the notion of the Killing form, a symmetric bilinear form on defined by the formula where tr denotes the trace of a linear operator. The criterion was introduced by Élie Cartan ().
dbo:wikiPageEditLink
n10:edit
dbo:wikiPageExternalLink
n12:JY8LAAAAYAAJ
dbo:wikiPageExtracted
2021-04-22T05:17:40Z 2020-02-13T00:42:22Z 2020-11-10T19:09:02Z
dbo:wikiPageHistoryLink
n10:history
dbo:wikiPageID
3052668
dbo:wikiPageLength
5674 5685
dbo:wikiPageModified
2020-02-13T00:42:19Z 2020-11-10T19:08:56Z 2021-04-22T05:17:37Z
dbo:wikiPageOutDegree
22
dbo:wikiPageRevisionID
940517069 988048663 1019227043
dbo:wikiPageRevisionLink
n11:940517069 n11:1019227043 n11:988048663
dbp:wikiPageUsesTemplate
dbt:Reflist dbt:Harvs dbt:Citation
dct:subject
dbc:Lie_algebras